
AD-A230 444 DTIC FILE COPY

RADC-TR-90-282
Final Technical Report
December 1990

THE BBN KNOWLEDGE ACQUISITION
PROJECT: PHASE TWO

BBN Systems and Technologies Corporation

DTIC
m ELECTE

DEC28 1990
Sponsored by DDefense Advanced Research Projects Agency
DARPA Order No. 5290 U

APPROVED FORPUBLICRELE.AS9E; D.TR/8770N ULIM/7ED

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-282 has been reviewed and is approved for publication.

APPROVED: Ql7 T

SHARON M. WALTER
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

BILLY G. OAKS

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

THE BBN KNOWLEDGE ACQUISITION PROJECT: PHASE TWO

Mark H. Burstein
Tom Reinhardt

Richard Shapiro

Contractor: Bolt, Beranek, and Newman Inc.
Contract Number: F30602-85-C-0005
Effective Date of Contract: 9 January 1987
Contract Expiration Date: 30 September 1989
Short Title of Work: Expert Assistant for KnOwledge Acquisition
Program Code Number: 4E20
Period of Work Covered: Jan 87 - Sep 89

Principal Investigator: Mark H. Burstein

Phone: (617) 873-2791

RADC Project Engineer: Sharon M. Walter
Phone: (315) 330-3577

Approved for public release; distribution unlimited.

This research was supported by'the Defense Advanced Research
Projects Agency of the Department of Defense and was
monitored by Sharon M. Walter, RADC (COES), Griffiss AFB
NY 13441-5700 under Contract F30602-85-C-0005.

" - -Fom-nApproved

REPORT DOCUMENTATION PAGE MB NO. 0704-01 8
Pwic bpu de nfor~ -, ,~ d rommisefi. ewedtosvergui hmx per responst. rcWd, -gtore fr rmwr =~i~ s-wi mx' d scaS.

c d infansaf rckxurg siggestins for re rvc g th bude to Wad'v~ n Hea:.m ms Savmes. Okirsae for inf Or pu ardRepots, 1215 Jeferso'n

Oun Hi"rW. S" 1 204. Atiguan VA =2-= ,d to frffc of Maiganrt wd 8Stdgu Paperwork fRiuimo PrOsea (0?04-M a. Wadirrcom CC 20S

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE a REPORT TYPE AND DATES COVERED ,

November 1990 Final Jan.87 - Sep 89

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
THE BBN KNOWLEDGE ACQUISITION PROJECT: PHASE TWO C - F30602-85-C-0005

PE - 62301E

6. AUTHOR(S) PR*- E290

Mark H. Burstein, Tom Reinhardt, Richard Shapiro
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 8. PERFORMING ORGANIZATION
BBN Systems and Technologies Corporation REPORT NUMBER
10 Moulton Street
Cambridge MA 02138

9. SPONSORINGIMONITORING AGENCY NAME(S) WDIADDRESS(ES) ... 10. SPONSORING/MONITORING
Defense Advanced Rome Air Development Center (COES> AGENC'(REPORT NUMBER
Research Projects Ageuicy Griffiss AFB NY 13441-5700 RADC-TR-90-282
1400 Wilson Boulevard
Arlington VA 22209-2308

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Sharon M. Walter/COES/(315) 330-3577

12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited..

1a. ABSTRACT Imo'w 2words)

This document presents the final report on Phase Two of the BBN Knowledge Acquisition

Project. It includes a brief overview of the project, and a review of KREME, the

Knowledge Representation Editing and Modeling Environment developed during the project.

KREME was designed to ease the problems involved in the development and maintenance

of large knowledge based systems, to support experiments with knowledge acquisition

and knowledge engineering techniques, and to provide a usable system for knowledge

acquisition for knowledge based systems.

14. SUBJECT TERMS I& NUMBER OF PAGES
Knowledge Base Editor, Knowledge Acquisition, Knowledge 56

Representation, KREME, Frame ,I PRICE CODE

17. SECURITY CLASSIFICATION ,8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OFAN F

UNCLASSIFIED UNCLASSIFIED KFIED SAR

NSN 1540-01.-M55W Stucoo F arm 296 2 J
Preawbod by ANSI Std Z39-1 4
2mJiaz

BBN Systems and Technologies Corporation

Table of Contents

1. Introduction 3

2. The New KREME Environment 5

2.1 KREME Overview and Functional Structure 5
2.2 The New KREME Desktop Interface 8

2.2.1 Component Windows 8
2.3 Window Operations 12

2.3.1 Window Display Operations 13

3. Extended Classification in KREME 15

4. KREME and SFL in CLOS 19

4.1 A Meta-class based Frame system 19
4.1.1 Integrating Objects and Frames 20

4.2 Design arid Implementation 21
4.3 Results of the Experiment 22

5. Applications of KREME Technology 23

5.1 KREME Applications and Spinoffs 23
5.2 SFL and TARL 24

5.2.1 SFL 25
5.2.2 TARL 26

5.3 A KREME Knowledge Base for Document Retrieval 31
5.3.1 DEARS 31
5.3.2 INDEXER 32
5.3.3 Initial Study 33

Accesion For
6. Conclusion NTIS CRA&I i 35

DTIC TAB 0
APPENDIX A. Test Plan U annourced Li 37

Jjstification

B y ..

Di.t ib.ttio: I

Availability Codes

Ava ii a. d I r
Dist Spe. cial-"-T aia, o

BBN Systems and Technologies Corporation

List of Figures

Figure 2-1: KREME Functional Description 6
Figure 2-2: KREME Internal Object Functional Decomposition 7
Figure 2-3: Original KREME Editor when Editing a Concept 9
Figure 2-4: KREME's new Desktop Interface when Editing a Concept 10
Figure 3-1: Subsumption Hierarchies in KREME Frame Language 16
Figure 3-2: A KREME Restriction Hierarchy Graph with Boolean Restrictions 17
Figure 3-3: Resulting KREME CONCEPT Hierarchy Graph 18
Figure 5-1: SPROKET system overview 25
Figure 5-2: Relationship between Concepts and Flavors in SFL 27
Figure 5-3: The SFL Editor Interface 28
Figure 5-4: The TARL Procedure Editor 29
Figure 5-5: Goals and Procedures in TARL 30

iii!1

BBN Systems and Technologies Corporation

Abstract -

This document presents the final report on Phase Two of the B Knowlege Acquisition Project. It includes anThis doumw prset the fna repor on
overview of the project, and a, review of KREME, the Inowledge Representation Editing and odeling
Environment developed during the project. KREME was designed to ease the problems involved in the

Q,/development and maintenance of large knowledge based systems, to support experiments with knowledge
acquisition and knowledge engineering techniques, and to provide a usable system for knowledge acquisition for
knowledge based systems. During Phase One of the project KREME editors for Frames, Rules and Procedures were
developed. Techniques were also developed for consistency maintenance and macro editing of knowledge bases.
During Phase Two, refinements were made to the KREME Frame Language and Editor, with an eye toward
real-world applications and portability. These refinements included extension of the frame language and the frame
classifier, to allow for the expression of a wider variety of constraints on the represented knowledge. A new
interface was also designed and implemented, enabling more flexible editing and browsing of knowledge bases.
KREME was also converted to run in Common Lisp using the CLOS object system, in preparation for its use on
other hardware platforms. Phase Two also included experiments in the use of KREME tools in the Common Lisp
environment, in conjunction with a tool for document indexing and retrieval.

BBN Systems and Technologies Corporation

1. Introduction

This is the Final Report for Phase Two of the BBN Knowledge Acquistion Project. This research was

supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by

the Rome Air Development Center (RADC) under contract number F30602-85-C-0005.

The goal of this project was to create a useable and extensible knowledge engineering environment that would

be capable of handling very large knowledge bases and support experiments with knowledge engineering

techniques. During Phase One of the project we created KREME, the Knowledge Representation Editing and

Modeling Environment. KREME is an extensible experimental environment for developing and editing large

knowledge bases in a variety of representation styles. It provided tools for effective viewing and browsing in each

kind of represenation, automatic consistency checking, macro-editing facilities to reduce the burdens of large scale

knowledge base refision and some experimental automatic generalization and acquisition facilities. KREME was

designed to facilitate the process of developing and editing representations of knowledge about a domain, while

minimizing the classic problems of knowledge acquisition and knowledge base maintenance that arise during the

development cycle of large expert systems. Knowledge engineers and subject matter experts with some knowledge

of basic knowledge representation techniques will find it easy to use KREME to acquire, edit, and view from

multiple perspectives knowledge bases that are several times larger than those found in most current systems.

Du 4ng Phase Two of the project, our focus of attention was on refinements to the KREME Frame Editing

environment, gearing that system to be even more useful in real-world tasks. We began by extending the semantic

scope of the language so that knowledge engineers could more carefully encode constraints on the frames that they
represented within a knowledge base for an application. We then rewrote the interface modules for the environment

to take advantage of the capabilities and flexibility of a "desktop" style windowing environment, while at the same

time introducing the notion of "window clusters" in order to retain the power of we had found in presenting multiple
views on aspects of represented objects all at one time. We also converted the KREME system to CLOS and began

experiments with integrating KREME's knowledge representation facilities into an environment requiring ongoing

manual and semi-automatic knowlege acquisition and knowledge refinement, namely, a document indexing and

retrieval system.

This report reviews our work on the revised version of KREME, BBN's Knowledge Representation, Editing

and Modeling Environment, including our development of extended classification techniques and a new interface

design for KREME. We also briefly describe our conversion of KREME to run under CLOS, the Common Lisp

Object System, and an experiment in a more thorough integration of KREME into CLOS using the meta-object

protocol. We conclude with a chapter on the some of the projects and systems that have adapted.or incorporated

KREME technology into them, to give a flavor for how it has been used.

The initial version of KREME was developed during Phase One by Mark Burstein, Glenn Abrett, Albert

Boulanger and Richard Shapiro. That system included a family of editors in a single environment for knowledge

3

BBN Systems and Technologies Corporation

expressed in Frames, Rules and Procedures. The revised KREME frame editing system was written using CLOS,

the Common Lisp Object System. A new interface, designed and developed by Richard Shapiro and Mark Burstein

combined the flexibility of a "desktop" windowing environment with the capabilities of constraint frames composed

of multiple windows. The conversion of the representation language and classifier from Symbolics Flavors to

CLOS was done by the team of Richard Shapiro, Tom Reinhardt and Mark Burstein. The experiment with CLOS

meta-object protocol was done by Tom Reinhardt.

Chapter 2 of this document reviews the functional structurc'of the KREME system, and describes the design

of the revised KREME interface. Chapter 3 reviews our work on the extended classifier algorithm that supports a

classification over a wider semantic base than the original KREME and NIKL languages did. Chapter 4 reviews our

efforts at converting a portion of KREME to CLOS, and including an experiment in integrating KREME Frame

semantics directly into the CLOS Meta-object protocol. For more information on these subjects, readers are referred

to the Phase Two Technical Report [Burstein et al. 89a] and the KREME User's Manual [Burstein et al. 89b].

Chapters 5 gives a brief look at some of the uses that KREME technology has been put to. After a brief overview of

KREME applications, we give a describe SFL and TARL, the representation tools for the SPROKET simulation

environment. SFL and TARL are based directly on the KREME frame and procedures languages and editors. We

also describe some KREME-related work on INDEXER, an on-line document retrieval system. Appendix A

describes the Test Plan for the loading and startup of the revised KREME Frame Editor.

4

BBN Systems and Technologies Corporation

2. The New KREME Environment

In this chapter, we describe the overall design of the new KREME environment, and how it appears to the

user. The first section gives an overview of the KREME architecture. The next section talks about the redesigned

interface, and describes the appearance of the screen when using KREME. For a more complete description, see the

KREME User's Manual [Burstein et al. 89b].

2.1 KREME Overview and Functional Structure

The current version of KREME provides, within a uniform environment, a number of special purpose editing
facilities that permit knowledge to be represented and viewed in a variety of formalisms appropriate to its use, rather
than forcing all knowledge to be represented in a single, unitary formalism. In addition to a general editing

environment, KREME provides tools to do the kinds of validation and consistency checking so essential during the

development or modification of knowledge bases. As the size of knowledge bases grows, and more people become
involved in their development, this aspect of knowledge acquisition becomes increasingly important. In the hybrid

or multi-formalism representational systems that are becoming prevalent [Rich 82, Brachman 83, Vilain 85],

techniques must be provided for consistency checking not only within a single representational system, but between
related systems.

Our approach to consistency maintenance has been to develop a knowledge integration subsystem that
includes an automatic frame classifier and facilities for inter-language consistency maintenance. The frame

classifier automatically maintains logical consistency among all of the frames or conceptual class definitions in a

KREME frame base. In addition, it can discover implicit class relationships, since it will determine when one
definition is logically subsumed by another even when the knowledge engineer has not explicitly stated that

relationship. We also explored inter-language consistency maintenance facilities for detecting inconsistencies in

references to frames in knowledge bases specified using other representation languages (e.g., rules, procedures).

However, these tools are not yet ready to be included in the editing environment.

A second important area of investigation in developing the KCREME editing environment has been the attempt
to provide facilities for large-scale revisions of portions of a knowledge base. Our experience indicates that the

development of an expert system inevitably requires systematic, large scale revisions of portions of the developed

representation. This is often causcd by the addition or redefinition of a task the system is to perform. These kinds

of systematic changes to a knowledge base have, to date, only been possible by painstaking piecemeal revision of

each affected element, one at a time. Our initial approach has been to provide a macro-editing facility, in which the

required editing operations can be demonstrated by example and applied to specified sets of knowledge structures

automatically. We plan to provide a library of such generic macro-editing operations for the most common and

conceptually simple (though potentially difficult to describe) operations during phase two of the project.

5

BBN Systems and Technolog;es Corporation

Finally, we have begun to investigate techniques for automatic generalization of concepts defined in a
knowledge base. We will briefly describe these experiments as well, in the section on knowledge extension.

A key design goal for KREME was to build an environment in which existing knowledge representation
languages, appropriate to diverse types of knowledge, could be integrated and organized as components of a
coherent global representation system. The current KREME Knowledge Editor can be thought of as an extensible
set of globally coherent operations that apply across a number of related knowledge representation editors, each
tailored to a specific type of knowledge. Our approach has been to integrate several existing representation
languages in an open ended architecture that allows the extension of each of these languages. In addition, we have
provided for the incorporation of additional representation languages to handle additional types of knowledge.

Underlying the entire system is a strong notion of meta-level knowledge about knowledge representation and
knowledge acquisition. The representation languages were implemented based on a careful decomposition of
existing knowledge representation techniques, implemented as combinable objects using FLAVORS [Keene and
Moon 85] in the original version and CLOS [Bobrow et al. 88] classes in the new system. By organizing this
meta-level knowledge base modularly, behavioral objects implementing such notions as inheritance and
subsumption could be "mixed in" to a variety of representational subsystems making the incorporation of new
representations and their editors a reasonably straightforward process. That is, each object in the meta-knowledge
base encodes some aspect of a traditional representational technique, and is responsible for its own display, editing
and internal forms.

The basic KREME frame-editing environment is composed of a number of components, designed to be
reusable and reconfigurable for a variety of knowledge representation language editing tasks. The basic
organization of the system as a set of modules is displayed in figure 2-1

Extended KREME Extende
Frame Representation Clasifende

Language .Casfe

Editing System

New KREME User Editing Environment
With Clustered Windows

Figure 2-1: KREME Functional Description

6

BBN Systems and Technologies Corporation

These pieces of functionality are organized as "mixins", reusable functional components that comprise the

basic structures of frame, role, and slot definitions. Since KREME is built using an object-oriented substrate
(Symbolics FLAVORs [Keene and Moon 85] in the original version, CLOS classes [Bobrow et al. 88] in the new
version), these pieces of functionality are parts of the definitions of objects in the underlying object system. The

basic classes of functionality are:

* Language Definition and Classification Objects

e Editor Interaction Objects (for Display and Editing Actions)

* Window Management Tools

The decomposition of the functionality of the basic representation, classification and editing facilities into
their component object types is displayed in figure 2-2.

Description

Eiig Concept Role SlotcitostmEditor E

Item Item Item

Editor Interface Displays & Editor Commands

Figure 2-2: KREME Internal Object Functional Decomposition

As was the case with the original KREME system, these components can be reused with a variety of language

definitions, so the basic editor facilities can (and have) been used for a number of different kinds of editing tools,

including:

" A CLOS Browser

* An application-specific Rule Editor

" An editor for declarative representations of Frames, Goals and Procedures for a simulation environment

" Other application-specific editing tools.

7

BBN Systems and Technologies Corporation

For a more complete description of the original KREME design, see [Abrett and Burstein 87].

2.2 The New KREME Desktop Interface

The original KREME system was designed as a set of "views", each composed of a set of windows in a fixed

configuration, occupying the whole workstation screen. Each view focused on one kind of representation, a

concept, a role, a rule or a procedure, and filled the windows of the view with information about different aspects of

that kind of representational object. Only one kind of knowledge representation object was presented at at time.

Figure 2.2 shows an example of the old interface while editing a concept, as KREME Frames are called. Although

the individual windows on each screen were general-purpose tools, it was impossible to do any reshaping of them to

accomodate the varying amounts of information about any given representation object that was visible at one time.
It was also impossible to bring up windows showing different objects or different kinds of objects at the same time.

When we converted KREME to run under CLOS, the Common Lisp Object System, we also redesigned the

interface tools, decoupling them from the underlying representational systems, and redesigning the window tools to

be more like those on an Apple Macintosh or a SUN workstation. The result was a more modular, and more flexible

system for grouping movable, reshapable windows that allowed users individual preferences for editing become
predominant.

As has become prevalent in many window-based interfaces, The KREME screen interface now appears to you
as a Desktop covered by rectangular boxes called "windows" that can be moved around and stacked up like pieces

of paper. Each window is independently movable and shapeable. Unlike most other window-based systems,
KREME defines some sets of windows to act together, serving collectively to display and allow editing of a

particular concept or role object. Sets of windows acting as a unit are called clusters. There are default
arrangements for clusters for Concepts and Roles, and it is possible for the user to redefined the configuration of

these window clusters in a file that is loaded before an editing session. We have tried to select and arrange the
windows in each cluster definition so that you can edit a particular kind of knowledge representation object

effectively and conveniently.

2.2.1 Component Windows

Figure 2.2.1 shows the as it might appear while editing the concept CAR. There are a number of different

kinds of windows that can appear on the desktop. The ones shown are much the same as those shown in the prior
figure. The difference is that these are only a few of the windows available, and they are all independently

moveable. We first discuss what each of these windows are, and what they are for. The numbers in circles on this

figure are referred to below, in describing that window.

The Main commands window (1) contains commands that may be invoked at any time while running
KREME.

8

BBN Systems and Technologies Corporation

Figure 2-3: Original KREME Editor when Editing a Concept

ILI

1. 2
U0.

C IjIf~Ce---0

t. C ~ *~9

BBN Systems and Technologies Corporation

Figure 2-4: KREME's new Desktop Interface when Editing a Concept

Cocet CAR W-- - ~c.t- R . 01U "s

ri ilnitiva: NO [Classifiedl: Unmodifiedl] t (M t...0..

Si~ccilizeu M00-UIGl WHbLL -OUAC I C .01 tie .pCh

User propei t ies: oAlI Almh- "I, All It'~h)

IOC Ien F1,1.INF-OF Fxnctly I (A AFJTOMORII F-FNGIHF) (A AFITOMORII F-F~flINF) none
tiocal AESTHETIC-APPEAL Exactly I (A AESTHETIC-APPEAL) (A AESTHETIC-APPEAL) none
:Iocal MADE-IH Exactly 1 (A COUNTRY) (A COUNTRY) none
:loci I CAR-HIVUE Lxa.Aly 1 (A CAH-HIDl) (A CAR-HIDE) none
:1 V.iI HANIIH ING-AHII I I I Xactly 1 (A HANIII lNG-AHII I I Y) (A HANIII ING-AHIt I I Y) rior,,
:1lOCR: WHEIELS Exactly 4 (A WHEEL) (A WHEEL) none

U.f

I.I
' ~ ~ ~ ~ ~ ~ 'USN I:I ~I I.....* L~.t~U Uu*l~ 4 h4tVt' '~t~I

U ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ 1...'P-t.. __________________________________

e. 'MNFJ
/ j~~ A~ h -.-. - - I A P II CIE* L S I

4- 11-1-6 FIAI I, - A".

-~~~~~~f AW ir. All~i RemIl~ ihf " tJC

To noeother ornn in Shai ft,01.1 Cnrl Co mYiod: o.rcSuer

t.it ji. ILLIV

I - *r r ' 111)A

I~IJ l=,lY) 7 FL ~

-lw0 t

MAIII -I.

Jooilie YL [casria -inoine

oirrnitq rnurm y'un.. J'LL~
DoanIo'e:0111T Cmio:ouc

Hoo41 D~fhod CONIY Cmpptd: O10 R

BBN Systems and Technologies Corporation

The Editor Items window (2) shows the names of the things being edited states whether they are roles or
concepts, and gives some information about their current edit state (e.g., whether they have been classified
before, and modified since they were classified). This window is not normally visible, unless you click the
<Middle Mouse> button on the desktop background.

The Attributes window (3) always displays pertinent information about the top item on the editor stack,
which is called the current editor object. For concepts, the Attributes window contains the concept's
name(s), a line specifying whether the concept is primitive and whether the concept has been classified
(defined) or not, and whether it has been modified in the editor since it was last classified. It also includes
lines giving the concept's parents, and a textual description. Variants of this window appear whenever you
are editing a concept, a role, or a rule packet.

The Graph window (4) displays a dynamically updated graph of all of the abstractions and specializations
of the current editor object. This view provides a constant visual display of the relative position of the
object being edited in a hierarchy. Graph windows often appear when you are editing concepts or roles, or,
in general, objects that live in hierarchies. There are also graphs for restrictions on slots, and graphs that
show how a particular relation ties a group of concepts together, as in part-whole relationships.

The Table edit windows (5) display one of a number of tables describing a set of features that are part of
the definition of the current edit object. The one displayed in (5) is the Local slot edit window, which has
one line for each locally defined slot of the concept named. This is the normal table to see when editing a
concept, although there are a number of others. Columns in the slots table show the source (where it was
inherited from) of the slot, the name of the slot (which is also the name of the role or relation that~the slot
represents), the slot's value and number restrictions default value, and a textual description of the slot.

The Features Commands window (6) is a menu containing commands for displaying attributes of
concepts or roles. There is a Concept Features Commands Window and a Role Features Commands
Window. This menu is used to change what is displayed in a table window, or to display additional
windows for a concept or role.

The Editor Interaction Window (7) is a Lisp Listener with a KREME command interpreter running.
(Normal LISP expressions can also be typed into this window, by hitting the <SUSPEND> key first.
KREME commands (like the ones displayed in command menus) can be typed in to this window directly,
or they will appear when you click on a command from a menu. This window is also used when KREME
needs to ask the user for information. Like all of the other windows, this window can be scrolled backward
and forward through a history of the current session using the scroll bar at the left.

The Mouse Documentation Window (8) is always visible on Lisp machine screens. This is where you
look to see what the mouse will do if you click one of its buttons.

11

BBN Systems and Technologies Corporation

2.3 Window Operations

There are a set of operations that enable you to move and reshape any window on the screen. These

operations are accessed by clicking the mouse in the top margin (the solid area at the top) of the window you wish to

operate on. Clicking the left button causes the border around the window to be highlighted. The window can then

be repositioned by moving the mouse (which moves the highlighted border) to where you would like the window to

be placed. Click the window again to put it there. (You can also do the same thing by clicking and holding the left

button down, dragging the window to where you want it and releasing the button.) The middle mouse button acts

similarly to reshape the window. Clicking that button on the margin area causes a carat (A) to appear. Move the

mouse to the side or comer you would like to move, then hold the left button down while you stretch or shrink that

side or comer. One very useful feature of the shape and move commands is that by pressing and holding the SHIFT

key while moving a window stops movement temporarily, and allows the window to be resnaped by stretching or

contracting the lower left comer. Lifting the SHIFT key continues moving it. Conversely, while the window is

being reshaped, the SHIFT key allows the window to be moved. Releasing the SHIFT key continues reshaping.

The right button on the mouse, when over the margin of a window, contains a menu of commands that include

the operations available on the left and middle buttons2 . In this case, that menu also includes the following

operations:

" Bury the window - that is, place it beneath all windows that it is currently on top of.

" Expand the window - reshape it to make it take up as much space as it can without overlapping other
exposed windows.

* Expand Horizontally - reshape the window horizontally to take up as much space as it can without
overlapping other exposed windows to the left and right of it.

" Expand Vertically - reshape the window vertically to take up as much space as it can without
overlapping other exposed windows above and below it.

" Hardcopy - Send an image of the window to the printer.

" Iconiry - Shrink the window to the size of the margin area. Once this is done, the operations available
on this menu include only restoring it, killing, moving and burying the window.

" Kill the window - that is make it disappear completely. You will be prompted with a confirmation box
if you use this option. To complete the Kill operation, click inside this second box.

" Move the window - This clicking and draging moves the window to a new place on the screen

" Move Constrained - Clicking this option again causes the carat to appear. Click the left button near
either side to make the window move horizontally, or against the top or bottom to make it move
vertically.

" Search - Clicking on this option and then typing a sequence of letters does an incremental search for
that string within the window. The letters you type will be highlighted as they are found. This is a way
to scroll the window to display some symbol that is off screen, or simply to find something that is
visible.

2This is generally true wherever the mouse is. There is always a menu activated by clicking the right button of the mouse, and it always

contains, among others, the operations found on the left and middle buttons.

12

BBN Systems and Technologies Corporation

* Set character style - This option is used to change the typeface used within the window, making it
larger or smaller. A menu of choices appears showing the typefaces and how they would appear.

* Shape - This is the same as the <Middle Mouse> button action.

* Shrink this window to expose others - At times a window is slightly too big, and it causes other
windows to be obscured, making those other windows inoperative. This option provides a means of
shrinking the window just enough to fix this problem, without you having to manually move and
reshape it.

* Menu of Display Operations - This command brings up a menu of operations on the window, as
described below.

2.3.1 Window Display Operations

Each window can, in principle, be used to display a number of different things, by changing the command
controling what is displayed in that window. The normal use of this feature of the system is to change a table
window from displaying one aspect of an object to another, as to change from displaying Local Slots to display All
Slots, including inherited ones. To make this possible, each window is associated with an object, called the focus of

the window, and a command that determines what kind of information displayed about the focus object.

When a command like Display Local Slots is issued for a concept, KREME must choose a window to display

those slots in. Normally, one window is designated as the default output window. This window is designated by
an asterisk (*) appearing after the title of the window in its top margin. If there is no default output window,
KREME assumes that you want to build a new window, and a rectangle will appear, that can be positioned by
moving the mouse. Clicking left will cause the window to appear at the current position of that rectangle, filling it
completely. This rectangle is the same as the one that appears when a Move window command is issued, and so you
may also reshape the window that will appear by pressing SHIFT, before you place the window in its final position.

This new window will become the default output window.

Windows can also connected to each other, if they are all displaying aspects of the same object. So, for

example, in figure 2.2. 1, all of the windows in the upper part of the screen are displaying aspects of the concept for a
CAR. This group of windows is called a window cluster, because they are all tied to each other. Any command
that changes the focus of one of these windows changes the focus object for all of them.

For example, if another Edit Concept command is issued for the concept ENGINE, the default will be to use
as a display window the Concept Attributes window currently displaying the attributes of the concept CAR. This
command will change the focus object of that window to be ENGINE, and simultaneously change the focus of all of
the other windows in the cluster (that is, all windows tied to it, directly or indirectly) to also be ENGINE. The effect
of this is to have all of the displays in the top half of the screen all show things about ENGINE. The graph window,
which was associated with the command Graph Concept, will now display a graph of the abstractions and
specializations of the concept ENGINE. The Local Slots window will display the local slots of ENGINE, etc.

This behavior of the Edit Concept and Edit Role commands can be changed by using the :Display keyword

13

BBN Systems and Technologies Corporation

command option on the command line in the interaction window. When there are no Edit Concept clusters of
windows displayed, the default for the :Display keyword command option is New Display, e.g., to create a new
one. Otherwise the default is to reuse one that is already there, as described in the last paragraph. If you do not wish
the Edit Concept command to reuse the existing display windows, you can cause a new cluster of windows to be
created by providing the :Display keyword command option with value New Display. Or, if you wish to have the
effect of a command reuse windows that it would not normally use, you may issue the :Display option and point at

one of the windows in the cluster you wish to use.

14

BBN Systems and Technologies Corporation

3. Extended Classification in KREME

One of the first tasks we addressed in Phase Two involved the extension of KREME's classifier to deal with

more complex restrictions on slots. Our goal was to give knowledge engineers the enriched expressive power they
needed to specify more precisely the constraints on slots in a concept's definition. We based our enhanced slot
definition language on those found in commercial frame language systems like Intellicorp's KEE [Intellicorp 84].
Our goal was to demonstrate that such techniques could be used with frame language systems like KEE. However,
we wanted to do this without giving up the important role played by the KREME classifier. The difficult part of this

task was extending the classifier, so that its role in knowledge base maintenance was preserved. This meant enabling
it to reason over restrictions composed of boolean combinations of concepts, as opposed to simple constraints that
referred to single concepts. This chapter briefly reviews that work.

The success of the effort to extend the classifier depended in large part on the unique design of the KREME
classifier, a design that was also crucial to the success of KREME in doing re-classification and generalization.
KREME's classifier, unlike the classifier of its predecessor, NIKL [Moser 83], enables users to modify and re-
classify concepts during an editing session.3 This means that there is no need to edit textual definitions of the
concepts or frames used in an application and then reload the whole knowledge-base in order for classification to
occur correctly. The KREME classifier acts somewhat like a truth maintenance system, in that it takes revised
definitions of concepts and propagates the effects of redefinition to all related definitions in the knowledge-base. For
a full description of the KREME classifier, readers should refer to [Abrett and Burstein 87].

The modular design of the KREME classifier, and the introduction during Phase One of an independent
hierarchy for slot restrictions made the job of extending the slot restriction language and classifier much easier. In
order to allow redefinition to occur in a reasonable period of time, and in anticipation of the extension of KREME to
a language with more complex slot restrictions, the classifier was redesigned mid-way through phase one of the
project to include the explicit caching of the subsumption relations between the slots of different concepts, as well as
the relations between the concepts themselves. In effect, KREME builds a classification hierarchy of slot
restrictions that exists separately from the concept and role hierarchies Figure 3-1 shows how these hierarchies are
related. Each slot on a concept is classified separately as to how its value and number restriction relates to others
that have been used elsewhere in the concept network. Slots are also related by virtue of their slot name, which is
the name of the role or relationship that they denote. Since roles also live in a subsumption hierarchy, as with the
relation HAS-PROPERTY and its child COLOR-OF, then the slots that refer to those relations are also related.

In the KREME classifier, each component language definition object was made responsible for answering
subsumption questions in order to relate two objects of that type. This meant that we could extend the slot

restriction language and make classification work for that extended language simply by adding special rules for
testing the subsumption relations between two complex slot restrictions, in order to determine their relative positions

3The classifier in LOOM (MacGregor 881, another system based on NIKL. and developed at ISI, now also does reclassification.

15

BBN Systems and Technologies Corporation

CONCEPT ROLE
Hierarchy RESTRICTION Hierarchy

Hierarchy
THING RELATION

RESTRICTION

has-property part-ofACT PROPERTY OBJECTLI _ oo-f

AT Phas-property (A PROPERTY)

MOVE COLORCAR
color-of wheel -of

t - color-f (A COLOR)

RED BLUE RED-CAR
1 color-of (A RED)

t
color-of (AND RED BLUE)

Figure 3-1: Subsumption Hierarchies in KREME Frame Language

within the subsumption hierarchy. The bulk of the classifier algorithm, for dealing with the global placement of new

objects in a hierarchy, remained unchanged, as did the classification of concepts that used these extended

restrictions.

Internally, complex restrictions were stored in a cannonical form, so that they could be efficiently compared.

Thus, when a new value restriction was entered, it was converted to conjunctive normal form (CNF), with some

rewriting to reduce the complexity of the expression, where possible. Finally, we specified a set of rules for

comparing two boolean descriptions in CNF, and answering the key question, whether one subsumed the other or

not. This can be a very expensive procedure in general, since the problem is NP-complete. However, for

expressions involving less then 10 or so concepts, we found speed was not an issue, and we added some heuristic

rules to this procedure that would look for shortcuts to answering this question, where a standard algorithm would
have been unnecessarily slow.

Unfortunately, it is theoretically impossible to make the resulting algorithm logically complete. It cannot

always resolve correctly that one concept subsumes another. It is, however, never going to incorrectly state that a

subsumption relation exists when that is wrong, or it goes in the other direction. It simply gives up on particularly

difficult cases and states that the two restrictions are incomparable. This means that the classifier will essentially

create siblings for such cases. This also means that the classifier for concepts may potentially miss a subsumption

relation that it could have inferred, in theory. However, for the vast majority of cases, the system functions well,

and provides the knowledge base builder with more than he entered explicitly.

16

BBN Systems and Technologies Corporation

Below is an example of what the classifier does with these extended restrictions. We defined the concepts
CAR, RED-CAR, BLUE-CAR, RED-AND-BLUE-CAR, and RED-OR-BLUE-CAR. Each of the colored cars was
defined as a non-primitive specialization of CAR, with a different value restriction on the COLOR-OF slot. Since
they were all non-primitive, the classifier is free to assume that the concepts are completely specified by their
definitions, and it tries to relate them based on their defined properties. As their names indicate, the RED-CAR had
a value restriction (VR) of RED on the slot COLOR-OF, the BLUE-CAR had VR BLUE on that slot, the RED-
AND-BLUE-CAR had VR (AND RED BLUE), and the RED-OR-BLUE-CAR had VR (OR RED BLUE) on the

same COLOR-OF slot.

In general, there could have been many concepts that used these same restrictions on COLOR-OF. However,
the relationships between these restrictions are computed only once. The classifier takes these restrictions and
relates them to each other. Each restriction is placed in the restriction lattice so that it is beneath restrictions that

subsume it, and all equivalent restrictions are classified the same. That is, concepts with slots using equivalent
restrictions have those restrictions unified in the restriction lattice. Even though there could have been many
concepts that used these same restrictions on COLOR-OF, the relationships between different restrictions are thus
computed only once, and each is then placed in the restriction hierarchy under the more general restriction COLOR-

OF:(A COLOR), which was defined for CAR. Figure 3-2 shows a KREME graph of this portion of the restriction
hierarchy.

Slot-,:F
I AM. n nurnt.r THING;

.-. Czcp E.0 ---- A

.....

........

, n EC".J.t ,TL .m,. ,,oon¢e. E:L'E- AN

I At I.,.t I FED, I At leasr I EUJE

I Slot COLIR-.,F. ,.oncept PED-,N,-BLUE-,.AR
At Ieat I (AINID RED BLUE)

Figure 3-2: A KREME Restriction Hierarchy Graph with Boolean Restrictions

As you can see from this graph, the restriction (OR BLUE RED) is mcre general than the restrictions RED

17

BBN Systems and Technologies Corporation

and BLUE separately, since the class of things that is either RED or BLUE includes alt red things and all blue
things. The restriction (AND RED BLUE), since it is only true of things with both colors, is more specific than both
the class of things with o.olor RED, and the class of things with color BLUE.

Once the KREME classifier had established these slot restriction relationships, it turned to the classification of
the concepts that used those slots. All of the colored cars were defined as non-primitive concepts differing only by
the restriction on the COLOR-OF slot. They were also defined as specializations of the concept CAR. In a system
without a classifier, they would all be placed as direct descendents of CAR. However, the classifier, knowing how
they all differed only in one slot restriction, could detect that some were specializations of the oth,,rs, and establishes
a hierarchy for those concepts that parallels the hierarchy of their restrictions on COLOR-OF. This is shown in
figure 3-3 below.

cc'-': = iBLUE~-: 7-i

Figure 3-3: Resulting KREME CONCEPT Hicrarchy Graph

18

BBN Systems and Technologies Corporation

4. KREME and SFL in CLOS

In preparation for use of KREME on other platforms, notably SUN workstations, we undertook the conversion

of KREME from its original implementation in terms of Symbolics FLAVORS objects to the PCL object system,

the preliminary implementation of CLOS developed at Xerox PARC. CLOS stands for the Common Lisp Object

System [Bobrow et al. 88]. The conversion of the internal frame language definition objects and classifier was a

relatively straightforward translation of one object system to another. The new system, with some optimization,

appears to work about as fast on a SUN 4 as the original FLAVORS system did on a Symbolics Workstation. This

makes it well suited to use in that environment. A preliminary conversion of the revised interface and editing

environment has also been completed. The SUN interface is built using CLIM, the Common Lisp Interface Manager

developed by International Lisp Associates in conjunction with a number of LISP vendors and developers.

For another project at BBN, Glenn Abrett, the principle implementer of the original version of KREME, and

others, developed a "stripped down" version of the original KREME language and editor that focused on rapid

editing and instantiation in a production environment, without the overhead of full classification. This system is

called SFL for Simplified Frame Language. SFL, together with a revised version of the KREME procedures

language and editor called TARL, the Tactical Action Representation Language, are the knowledge acquisition and

representation tools for a complex multi-agent simulation facility that is used in the Semi-Automated Forces system

for SIMNET, a battlefield simulation and training environment. These representation tools are discussed in the next

chapter, to show one of the uses that the KREME technology has been put to.

Our work converting KREME and SFL to run under CLOS raised an interesting possibility. Because CLOS

has an accessible meta-object protocol, it was considered possible to write a version of the KREME language that

was written directly as a set of meta-classes in the CLOS environment, providing a truly integrated object system

with SFL/KREME Frame semantics for slots. This experiment was undertaken by Tom Reinhardt, and is reported

in full in [Reinhardt and Burstein 89], a paper presented at the 1989 OOPSLA conference on object-oriented

programming. This section gives a brief overview of points made in that paper. For further discussion see also the

Phase Two Technical Report [Burstein et al. 89a].

4.1 A Meta-class based Frame system

Many efforts at BBN have considered the use of CLOS when building a knowledge base for a production-

oriented knowledge based system. This investigation looked at one way to ease their entry into that environment.

We endeavored to introduce the frame language SFL directly into the CLOS environment using the meta-object

protocol. Unlike Kreme, SFL does not attempt to maintain a completely classified hierarchy of concepts and

relations. Instead SFL accepts the (parent-child or subsumption) hierarchy as defined by the user, and ensures that

the properties, i.e., the slots, are inherited correctly using the completion algorithm from KREME. Whereas

19

BBN Systems and Technologies Corporation

completion was a subtask of the original Kreme language classifier, it is the primary task of SFL. We were able to

develop a version of this algorithm to replace the effective slot computation mechanism of the standard CLOS
meta-class, thereby producing a true CONCEPT meta-class.

4.1.1 Integrating Objects and Frames

From numerous projects currently underway at BBN we have seen a requirement for a knowledge
representation and/or acquisition systems that are similar in (1) their use of large amounts of data requiring a fast,
easily verifiable knowledge representation language, and (2) their need for fast instantiation of objects from their
underlying descriptions. Just as importantly, though, they differ in the size and complexity of their underlying
knowledge bases, and in their need to incrementally evolve. This, in turn, implies their need to operate over
incomplete, possibly inconsistent data.

Of these items, the last, the need or desire to incrementally define and edit these large knowledge bases in the
absence of total knowledge, is critical in evaluating the desirability and feasiblity of the integrating frames into

CLOS.

The Meta Object protocol, as described in Chapter 3 of the Common Lisp Object System Specification
[Bobrow et al. 88], provides a general mechanism for extending the CLOS interpreter.4 A new language, SFML

(the Simple Frames Meta Language), has been implemented within this mechanism. We have shown that by
defining specific protocols at this level, the desired behavior, i.e., the salient properties of SFL, can be bootstrapped
in a general and attractive manner. Moreover, SFML provides functionality above and beyond that provided by the
original SFL, specifically,

1. It permits incremental definition of knowledge bases;

2. Designers may quickly and predictably particularize its behavior through the redefinition of generic
methods;

3. It provides a builtin instantiation mechanism that has and will continue to be refined over time.

4. It is envisioned that upon acceptance of the Meta Object Protocol by the Common Lisp Language
Committee, X3J13, SFML will be completely portable and therefore available to a variety of
traditional as well as emerging architectures.

These properties are, by in large, a direct result of having implemented SFML within the CLOS metaobject

protocol.

4
1t should be noted that although the Common Lisp Object System Specification has been accepted by the Common Lisp Language commiuee,

X3J13, Chapter 3. outlining the Meta Object protocol, has not as of this writing.

20

BBN Systems and Technologies Corporation

4.2 Design and Implementation

In order to follow in detail the design and implementation process, a detailed understanding of the meta-object

protocol is necessary. Interested readers should refer to [Reinhardt and Burstein 89] and [Bobrow et al. 881 for

details. Here, we just give the basic ideas behind the process.

The CLOS Meta-object protocol is a set of modifiable behaviors associated with the definitions of all objects.

Normally, the classes of objects defined for an application are derived from STANDARD-CLASS, in much the

same way FLAVORS provides a builtin definition mechanism for building classes of flavor objects. The difference

is that one can build modified versions of STANDARD-CLASS quite naturally, where the definitions of FLAVORS

cannot be similarly modified. Thus, the object classes for CONCEPT, ROLE, SLOT and RESTRICTION in the

original KREME system were defined asflavors (See Figure 2-2.), and in the straightforward conversion to CLOS,

they became classes, based on the meta-object STANDARD-CLASS.

An intermediate step between SFL-CLOS and SFML was the introduction of instantiation of concepts in

SFL-CLOS by specializing STANDARD-CLASS to a new meta-object that simply combined (mixed together)
STANDARD-CLASS and CONCEPT, to form STANDARD-CONCEPT, and declared that all slots stored in

instances of STANDARD-CONCEPT should become instantiated by the mechanisms of the original STANDARD-

CLASS. This effectively made all concepts be classes in the CLOS sense, for the purpose of instantiation. The

approach, while successful, required a lot of unnecessary overhead. Essentially, two object/frame mechanisms were
invoked for each concept defined. It was clearly a very inefficient approach to instantiation.

In SFML, a different approach was taken. Modified versions of STANDARD-CLASS were developed that

combined the repeated functionality much more carefully. The definitions of slots in the KREME/SFL sense were

carefully integrated into the CLOS slot mechanisms, by specializing the CLOS STANDARD-SLOT meta-class. In

fact, several varietys of slots were developed, one which included only the additionalinformation about number

restrictions, value restrictions and defaults found in the KREME/SFL language, another which also had capabilities

of demons.

The CONCEPT meta-class was then defined to use these new kinds of slots. This meant replacing the
methods on the meta-object STANDARD-CLASS that computed the effective slots for a class with new versions

that used the KREME/SFL completion algorithm to do the same job. This was only possible because of the design

of the meta-object protocol. What was required was the carefully replacment of one slot-computation mechanism

for another by defining a specialized version of the method COMPUTE-EFFECTIVE-SLOTD for the new,

specialized version of STANDARD-CLASS. There are a number of other details involved in this kind of an

experiment with the meta-object protocol, but they go beyond the scope of this report.

21

BBN Systems and Technologies Corporation

4.3 Results of the Experiment

This is clearly only an experiment in the unification of frames and objects. However, we feel it is an

important one, since CLOS is rapidly becoming the standard for object systems in Common Lisp. Unfortunately, as

of this writing, the meta-object standard has not been accepted as a standard, so we cannot yet rely on the portability

of that mechanism to all platforms and Common Lisp systems.

While we were successful in getting the merger to take place, there are a number of efficiency issues that
remain. The original FLAVORs version of SFL took great pains not to develop all of the structure necessary to

instantiate each and every concept, so as to avoid the overhead that that introduced. In a typical system, only the

most specific concepts are ever instantiated. The more general ones are there only to support the consistency and

inferential capabilities required of a knowledge base. On the tuther hand, the merger of the SFL and CLOS produced

a system in all concepts/classes are instantiable objects, with a reintroduction of all of the overhead that that implies.
Were we to make this into a true production system, this issue would have to be addressed more carefully.

On the other hand, the whole CLOS system continues to become more efficient, ro that in the future, this

overhead may not be a burden. We forsee a day when a system like SFML will become the standard for production

object/frame systems.

22

BBN Systems and Technologies Corporation

5. Applications of KREME Technology

During the period of time that Phase Two of the Knowledge Acquisition project was active, KREME editor

tools and derivatives of KREME have been used for a number of applications at BBN and elsewhere. This chapter

looks at some of those uses. The first section gives a chronology of the projects that have used KREME tools. The

second section looks at SFL and TARL, spinoffs of the KREME frame and procedures editors respectively that were

an important component of the Semi-Automated Forces project within the DARPA-funded SIMNET battlefield

simulation and training system. We conclude the chapter with a description of a project investigating the use of
KREME in an ongoing knowledge acquisition and refinement activity, the development of indices for an on-line

document library.

5.1 KREME Applications and Spinoffs

We begin with a bit of a chronology. There have been a number of applications that, directly or indirectly,
have used KREME environment tools and representation techniques over the last three years. We list the major

ones here, in order of time of their development.

" January - April 1987 -- A version of the original KREME editing environment was grafted onto NIKL
for use in the JANUS natural language system, based on an earlier grafting of the environment onto
KEE. TlIo effort was only partially successful because of the inability of NIKL to reclassify
definitions.

" August 1987 - December 1988 -- SFL, the Simplified Frame Language, and TARL, the Tactical Action
Representation Language, and editors for both languages were developed, based directly on the
KREME frame and procedures languages. These tools bec,,me part of the event-driven, object-oriented
simulation system called SPROKET.

" June - September 1988 -- The new version of KREME in CLOS with the new interface design was
implemented.

* July 1988 -- A browser and class editor for CLOS was developed directly from the new KREME
interface.

" August 1988 -- A CLOS browser based on the new KREME and a revised KREME rule editor are used
in an expert system for the IRS.

" September 1988 -- Work begins on the use of KREME in an document indexing and retrieval system to
be called INDEXER.

" October 1988 -- The new KREME frame system and editing environment was adopted for use as part of
a new Knowledge Acquisition facility for the JANUS natural language system.

" December 1988 -- A version of SFL in CLOS was developed, with the new KREME interface.

23

BBN Systems and Technologies Corporation

5.2 SFL and TARL

SFL and TARL are representation language editing environments directly based on KREME. 5 SFL, as has

been described earlier, is essentially a version of the original KREME Frame Editor without the classifier with the

addition of a Flavors-based instantiation mechanism that allows system developers to specify which concepts need

to get instantiated, and which concepts should be defined with "external" flavors mixed into them. This second

feature provides an extremely flexible mechanism for mixing programmed behaviors into concepts, so that they can

be used as active objects in a knowledge based system. TARL is a languaage for representing both goals and
procedues. It uses SFL to represent the classes that different goals and procedures fall into, and their attributes.

Both TARL and SFL are a part of the SPROKET simulation environment.

The SPROKET simulation environment is based more on AI planning languages than other simulation
languages in that the goals, plans to achieve goals, and actions undrtaken as parts of plans are all represented at the

knowledge level [Newell 81]. That is, they are described in a frame-based declarative language that can be reasoned

over. The simulator is optimized to interpret these declarative, object-oriented descriptions of goals and plans.

The knowledge representation languages used by SPROKET are accessed through a powerful set of
knowledge acquisition tools for browsing and editing declarative representations based on KREME. These editing

tools are essential in designing complex plans and behaviors for simulated agents with a high degree of flexibility

and accuracy.

SPROKET's procedure representation language makes the construction of procedures that can be simulated in
parallel quite easy. Each of the agents is simulated as acting in parallel, and can pursue multiple independent goals
in parallel. Agents can even perform several actions "simultaneously" if those actions are not mutually exclusive.

Figure 5-1 is intended to give a sense of how all of the pieces of the SPROKET environment fit together.

There is an underlying representation language for frames, and other languages for constructing goals, their subgoal

decompositions or plans, and procedures or scripts that can be used to achieve goals by performing contingency-

bounded sequences of actions. These languages are closely tied to a set of editing environments that were built

using tools developed for the KREME knowledge acquisition environment. Finally, there is the event driven

simulator that takes the user-developed representations of agents, their goals, procedures and actions, and causes the

agents to "walk through" simulated situations and try to achieve their goals.

5SFL and TARL were developed in part under DARPA's SlMNET Project under (Contract number MDA972-89-C-0060) and in part for
DARPA's ALBM program. For further details, see [Abrett, Burstein and Deutsch 891.

24

BBN Systems and Technologies Corporation

Knowledge

Acquisition Tools"

Knowledge s oGoal/Plan

Re resetation Editor
Languages L -

Goals/ Procedure rcdr
Plans Editor

User

Frames iKnowledge ,

Base Frame

Editor

t vGoal-Directed l
Discrete Event

Simulator

Figure 5-1: SPROKET system overview

5.2.1 SFL

SFL does not use the KREME classifier, but it does use most of the rest of KREME, including one portion of

the classifier, the slot completion algorithm that determines a concepts set of effective slots given its set of defined
slots and defined parents. 'Me primary function of completion in SFL is to determine the simplest logical

expression for each slot's value and number restrictions, based on the slot's local definition and the restrictions that

the concept inherits for that slot from its parents. Logically, these restrictions are the conjunction of their locally

defined values and the restrictions inherited from slots implementing the same relation on parent concepts.

In principle and in fact for the first version of SFL, the relationship between SFL concepts and Flavors was

established by shadowing the concept taxonomy with a duplicate flavor hierarchy. For every concept there was a

corresponding flavor, whose mixins (component objects) corresponded to the concept's direct parents, and whose

instance variables were each associated with one of the corresponding concept's slots (the slot names were identical,

as were the default values) 6 Whenever a concept was defined a shadow flavor was defined along with it. An

instance of a concept was in fact an instance of the corresponding flavor.

6Thec was one addditional slot on the flavor, containing a pointer back to the concept that it was a type of.

25

BBN Systems and Technologies Corporation

In the current version of SFL, this scheme has been modified for efficiency reasons to make the shadow flavor

hierarchy much sparser than the concept hierarchy. Only those concepts that are actually going to be instantiated or

have specific behaviors defined for them are actually shadowed by flavors. This eliminated a large amount of

needless flavor definition and redefinition as a concept latice was under development, a tremendous savings in both

time and space. Figure 5-2 illustrates this scheme.

This relationship between instantiable concepts and corresponding flavors gives SFL an efficient means of

associating behaviors (methods) with its concepts' instances. However, in order to more clearly distinguish the

behavior of objects in the simulation from their representations as concepts, concepts and flavors were by allowing

concepts to be directly associated with "external" flavors, flavors not part of a concept's "knowledge level"

definition, but mixed into the flavor used to instantiate the concept, providing it with additional runtime state

information and behaviors.

The SFL Editor Interface is directly based on the original KREME interface. It is shown in figure 5-3.

5.2.2 TARL

The TARL language is used for representing the goals, plans and procedures that drive the simulated agents.

These representations are at heart of the SPROKET environment, and the tools used to develop representations in

these languages are a large part of what makes SPROKET so powerful. Figure 5-4 is an example of the editor

interface to this set of representation tools, showing its strong connection to KREME.

TARL most closely resembles PRS, Georgeff and Lansky's procedural reasoning system [Georgeff and

Lansky 86]. The portion of TARL that is used for representing plans to achieve goals as an AND/OR graph of

subgoals is based directly on PRS. The major difference is that TARL provides a second layer for representing

conditionalized sequences of low level actions that is not part of PRS.

Figure 5-5 shows how the different "layers" of TARL are related to each other, and to the actions that the

simulator schedules and performs. At the top are the goals that the agent has and is trying to achieve. Goals

represent things that need to be accomplished. As in PRS, a goal is characterized by a set of achievement conditions

that describe the state of the world under which the goal can be said to have been achieved. Each goal is also

associated with an achievement plan (hereafter, simply called a plan) that describes the alternative sets of subgoals

and procedures that can lead to satisfying the goal's achievement conditions. Achievement plans (the second layer

in from the edge in figure 5-5 are specified as an AND/OR tree of subgoals, where subgoals may simply invoke

procedures. The default assumption in plans is that both conjunctive and disjunctive subgoals may be attempted "in

parallel", although that assumption can be overridden by explicit "serialization" links in the plan graph.

Eventually, one must actually do something to achieve one's goals. Thus, plans generally bottom out in

procedures that are like scripts [Schank and Abelson 77]. Procedures are the lowest knowledge level (declarative)

description of how something in the simulated world is to be done. Procedures describe sequences of atomic

26

BBN Systems and Technologies Corporation

Figure 5-2: Relationship between Concepts and Flavors in SFL

SYSTEM IDEFINES
FLAVOR SLOT A

FLAVOR LOCAL I COCEP
"OBJEcr (MY-CONCEPT) ICEP

DEFINES SLOT X
ALL SLOTS: (X, Y) EIE

A SLOT B
B

LOCAL FLAVOR SHDO TCIVS: (A, X) FC R 2 BC
2 FLAVOR A

T

i C) N
co

0

ONTAC DEFINES SLOT Y
FLAVOR C 23 ALL SLOTS:

FC 2 LAp4 oft (A,B, X, Y)

LOCAL- /
IVS: O

AB Y) FLAVOR/
23 X 0All IVS: MYCNEP/(A, B. X, Y. 44%NETMY-CONCEPT) A_______

INSTANCE
OF

FLAVOR
FC 2 3

A: "POR"
B: 200
X: 0
Y: "AXY"
MY-CONCEPT: C 2 3

27

BBN Systems and Technologies Corporation

Figure 5-3: The SEL Editor Interface

h:

Uj C

CL C

.0 D o C,

0
U,

P- U.

C) . L6

Uw 0

.LL) x

I CI

La-

C' tP-C

0U
j.

28

BBN Systems and Technologies Corporation

Figure 5-4: The TARL Procedure Editor

/ E

* L
AA

,Z X
U ;T~

C., -

' 2

L.~~C C.

Q >

iv

8) 11.1 2 9
• .,U: -.!= = . : -. .

29

BBN Systems and Technologies Corporation

Figure 5-5: Goals and Procedures in TARL

Iln s an Oects

OR

BBN Systems and Technologies Corporation

actions to be taken, tied together by temporal sequencing links into things that look like flow-charts. Actions are

encapsulated LISP functions, that are performed by the simulator, and which modify the simulated environment.

5.3 A KREME Knowledge Base for Document Retrieval

BBN has been working for approximately a year developing a document indexing and retrieval system for

agencies within the Department of Defense that are responsible for Technology Assessment. The overall goal of
this project is to develop and provide prototypes of distributed information management tools to those agencies

within DoD responsible for technology cooperation and exchange. These agencies have expressed a need in recent

years to move from a primarily reactive mode into a more active mode in identifying technologies to be pursued, in

establishing agendas for meetings, and in developing the memoranda of understanding which form the instruments

of exchange. Additional tools will be added to the workstation environment we have already developed to support
this active mode. One of these is a more knowledge intensive approach to document indexing, taking advantage of
KREME technology.

In a short time the document databases and information resources of technology exchange operations within
DoD will be vast. State-of-the-art automated document handling techniques, whose storage and retrieval algorithms

are ignorant of the content of the documents, will be inadequate. Such techniques may include extremely clever
exploitation of key phrases, statistical properties, indexing schemes, etc.; but they tend to confuse documents which

use similar words in different in senses (or use different words, but are similar in content). The result is that they

retrieve too many documents (or miss relevant documents). The technology exchange context requires a system

which intelligently exploits knowledge of subject matter, people, projects, countries, agreements, etc; recognizes

such concepts in texts; and assists human document handling by exploiting such knowledge.

5.3.1 DEARS

The DEARS (Document Entry And Retrieval System) was first developed to support the basic task of

building a large-scale, on-line, document-library retrieval system for technology cooperation operations.

Th. development of the current DEARS system has involved the application of three key technologies: the

document manipulation techniques embodied in the BBN SlateTM system, the knowledge acquisition techniques
developed during the construction of the KREME system, and the distributed computing environment of the BBN

Cronus system. This development also includes a well-developed infrastructure of fundamental information

management components, intra-DEARS interfaces, and user interface components. Each of these components is

briefly described below:

Document Identification and Location System. This system supports storage of the various data required to

identify and characterize documents. Such identification information includes such information as author, document

31

BBN Systems and Technologies Corporation

type (e.g., briefing, article, correspondence, agenda, proceedings), DoD document serial number, physical location,

date, relevant organization, etc.

Library Catalog System. This system supports cataloging of documents in a basic library card catalog

fashion. The fundamental subject/title/author catalogs are supported, with extensions to allow users to easily create

new catalogs according to domain or retrieval requirements (e.g., briefing catalogs, weapons catalogs, etc).

Relational Database System. This system is a general-purpose, commercial RDBMS with a Cronus-based

distributed interface. It accommodates both C language and LISP language-based components, and is used as a

general storage and retrieval resource for other system components.

Document Formatting System. This system preserves the original formatting of documents entering the

system. It is a LISP component that analyzes the presentation format of a document. This analysis is recorded with

the text of the document in the form of BBN SlateTM document format control statements. When a document is

displayed in by BBN SlateTM , it appears in its original layout.

Keyword System. This system provides storage and retrieval mechanisms for document/keywords tuples.

Upon entry to the system, documents are scanned and the presence of keywords in the text is recorded. This

component provides an additional tool for general document retrieval.

Graphical Interface Toolkit. This toolkit consists of a set of very high level routines for developing

graphical user interfaces.

The completed DEARS system will combine three approaches to indexing and retrieval, each of which

represents a phase in the development of the system:

1. standard techniques for users to manually index documents in "card catalogues", as represented by
DEARS,

2. fully automatic techniques for indexing documents by word usage indices, also in the current DEARS
system, and

3. semi-automatic Al-based techniques for conceptual indexing of documents using case-frame
representations.

5.3.2 INDEXER

We are now developing a plan to go beyond the traditional kinds of electronic document indexing exemplified

by the topic cataloging and inverted word indexing techniques available in our first prototype, the DEARS system.

Our primary goal in this research program is based on what we feel is a pressing need for exploration of the use of

AI knowledge representation techniques in the pursuit of more machine intelligent document indexing and retrieval

behavior. The strategy we will employ is based on the supposition that by encoding summaries of document content

in declarative representations built on a lattice of concepts and relations, one may provide far more accurate

retrieval behavior and account for more of the variations in expression that occur in ia-guage than is presently

32

BBN Systems and Technologies Corporation

possible using techniques that rely on the appearance of particular words or even sets of words. Our approach is not

to throw away what can be achieved by those techniques, but to augment them with these more precise forms of

indexing.

The results of our effort will be a new system, built as a companion to the DEARS system, that will provide a

much more sophisticated set of mechanisms and interface tools to support human indexers of documents, and an
"expert system" of general heuristic and domain dependent rules to guide searches of the document concept space.

This system we call INDEXER, which stands for "Intelligent Document Encoding and indeXing for Enhanced

Retrieval".

In implementing this strategy, we face the problem of encoding the content of documents to a "sufficient"

degree without the availability of a fully general natural language understanding technology. Our approach is to

provide a version of sophisticated user-interface that will automatically recognize most of the known terms and key

phrases of the domain, and allow human indexers to deal more quickly and thoroughly with the ambiguities and

questions of prioritization or relevance of different portions of the text.

This interface will be closely coupled to a version of KREME running on a SUN workstation. All of the

concepts and relations that are used for indexing will be represented in KREME, and these representations will then

be used to index documents, and clusters of documents.

5.3.3 Initial Study

In preparation for the full scale development of this, we have worked with the revised KREME system,

developing an initial knowledge base of terms that will support indexing of documents in the technology assessment

domain. A graph of this concept base is included in Appendix B. We are now working to connect a key phrase

recognizer to this KREME knowledge base.

33

BBN Systems and Technologies Corporation

6. Conclusion

This report has reviewed work done under Phase Two of the BBN Knowledge Acquisition Contract. The

overall goal of this project was to build a versatile experimental computer environmen for developing and

maintaining large knowledge bases. We have pursued the goal along several complementary paths. First, we have

constructed (several versions of) a flexible, extensible Knowledge Representation Editing and Modeling

Environment (KREME), in which different kinds of representations could be developed and maintained. In building

and equipping this "sandbox" we have been adapting and experimenting with techniques which we think will make

editing, browsing and consistency checking for each style of representation easier and more efficient, so that

knowledge engineers and subject matter experts can work together to build significantly larger and more detailed

knowledge bases than are presently practical.

The second path has been in investigating a variety applications of these techniques, bringing different

representational and user interface constraints to bear. Out of our preliminary efforts, a number of applications have

grown that use many of the component pieces of software found in the original KREME system. Chapter 5 has

looked at some of these.

A primary focus during Phase Two of the project has been improving the flexibility, from a user's point of

view, of the KREME system, and also the portability and technology transfer opportunities for KREME technology.

This is evidenced by the new interface described in chapter 2, our extension of the language semantics in chapter 3,

and in our conversion of KREME to CLOS and investigation of a full integration of KREME semantics with the

CLOS meta-object protocol, as discussed in chapter 4.

Given the range of experiences we have had with KREME in the past two years, we expect that much of the

technology developed on this project will find its way into new and exciting applications for DoD in the years to

come.

35

BBN Systems and Technologies Corporation

Appendix A
Test Plan

Loading KREME from Cassette Tape

Each site can test KREME by loading KREME from tapes according to the directions in this Appendix and

then editing the sample networks provided on the tape. Once KREME has been loaded, the document The KREME

User's Manual BBN Report 7175 provides instructions on how to edit and create knowledge bases using KREME.

KREME requires a Symbolics machine with Genera 7.2 or better already installed. If your machine has no

tape drive, you will have to read the tapes on another machine that does have one and then transfer the files to the
machine you wish to use.

There are two tapes provided. One is a Carry tape with some predefined translations files. This tape should

be loaded first using the (tape:carry-load) command as described in Volume 0 of the Symbolics manual. This tape
contains sample networks which should be placed in a directory with logical name NEWKREME:DEFS;*.*, and
real name YOUR-HOST:>newkreme>defs>, where YOUR-HOST is the machine that will house all of KREME

system. The other files are files to go into the SYS:SITE; directory. These are translations files for the component
systems of KREME. Each of these SYS:SITE;*.TRANSLATIONS files must be edited to replace the machine
name CONGER: with the name of your local machine that is to hold the KREME system files.

The second tape contains all of the files comprising the KREME system this tape should be placed in the tape
reader after the edits described above have been made. Then, by issuing the Restore Distribution command (also
found in Volume 0 of the Symbolics Manual) the tape will be loaded into the host machine that you specified in by
replacing the CONGER: in the SYS:SITE;*.TRANSLATION files.

Once all files have been loaded, simply do the following two commands:

Load System CLOS :version Newest
Load System NewKREME :version Newest

When this operation has completed, simply hit <Select>-K, and you will be in the KREME system. Once this
is done, follow the directions in the KREME User's Manual.

37

DISTRIBUTION LIST

R ADCICO S 10
ATTN: Sharon M. Walter
Griffiss AF3 NY 13441-5703

10 Moulton Street
Cambridge MA 02138

RADC/DOVL
Technical Library
Griffiss AF3 NY 13441-5703

Administrator 2
Defense Technical Info Center

DTIC- FDAC
Cameron Station Buildinq 5
Alexandria VA 22304-6145

Defense Advanced Research Projects 2
Agency

1400 Wilson Blvd
Arlington VA 2220Q-2308

HQ USAF/SCTT
Washinqton DC 20330-5190

SAFIA2SC

Dentaqon P 4D 209
Wash DC 20,,50

4avaL darfare Assessment Center
GIDEP 3nerations CenterlCode 3CG
ATT.: E 7ichards

Corona CA 9172

DL-1

HO AFSC/XTH
Andrews AF9 MD 2G334-5j001

HI SACISCOT
2

OFFUTT AF9 NE 68046

DTESA/R E
ATTN : Mr. Larry G.Mc1anus
Kirtland AF; NM 87117-5000

HO TAC/DRIY

ATTN: Mr. Westerman
Langley AFB VA 23665-5575

HQ TAC/DOA
LangLey AFB VA 23665-5554

WRDC/AAAI-4
Wright-Patterson AFB OH 45433-6543

WPDC/AAAI-2

ATTN: Mr Franklin Hutson
JPAF3 OH 45437-6543

AFIT/LDEE

BuiLdinq 642, Area 3
Wright-Patterson AF8 OH 45433-6583

WRDC/MTFL 1
Wright-Patterson AFB OH 45433

DL-2

AA RLIHE
Wright-Patterson AFB OH 45433-6573

AUL/LSE
Lda 1405

MaxwelL AF3 AL 36112-5564

HQ ATCITTOI
ATTN: Lt CoL KitLian
Randolph AF9 TX 73150-50CI

AFLMC/LGY
ATTN: Maj. Shaffer
3uitding 205
Gunter AFS AL 36114-6693

US Army Strategic Def
CSSD-TM-PA
PO Box 1500
Huntsville AL 35807-38-31

Ofc of the Chief of Naval Operation
ATTN: William J.Cook
Navy Electromagnetic Spectrum Mgt
Room 5467f, Pentagon (P-941)
Wash DC 20350

Commanding Officer
NavaL Avionics Center
Library D/765
Indianapolis IN 46219-213-

Commanding Officer
Naval Ocean Systems Center
Technical Library
Cioe 9642a
San Oiego CA 92152-5003

Naval 4e3eons Center
Technical LibrarylC3431
China Lake CA 93 5 5 5-6 0 0 1

DL-3

Suoerintendent 1
C ie 1424

NivaL Postgraduate School
Monterey CA 93943-5000

So-ce 2 l3vaL 43rfare Systems Comm I
4ashington DC 20363-51CI

CDR, U.S. Army Missile Command 2
Redstone Scientific Info Center

AMSMI-RD-CS-R/ILL Documents
Redstone Arsenal AL 353Q8-5241

Advisory Grouo on Electron Devices 2
201 Varick Street, Rm 1140
New York NY 10014

Los ALamos National Laboratory 1
Report Library
MS 5000
Los ALamos NM 7544

AEDC Library 1
Tech FiLes/MS-100
Arnold AFB TN 37389

Commander ' USAG 1
ASQH-PCA-CRLITech Lio
']tdg 61301
Ft Huachuca AZ 85613-6000

1330 EIG/EIT 1
KeesLer AFi MS 39534-6348

AFEWC/ESRI 3

San Antonio TX 78243-5000

DL-4

485 EI/EIp
ATT.N: S Buzinski
Griffiss AFe NY 13441-6349

ESD/XR.R
Hanscom AFS MA 01731-5000

ESD/AVSE
ATTN: Capt Lesieur
Hanscom AF3 MA 01731-5000

ESD/SZM
Hanscom AF3 MA 01731-5000

SEI JPO
ATTN: Major Charles J. Ryan
Carnegie Mellon University
Pittsburgh PA 15213-3890

Director NSAICSS
T513/TDL
ATTN: D W Marjarum
Fort Meade MD 20755-6000

Director NSA/CSS
W1 57
9300 Savage Road
Fort Meade MD 21055-6000

NSA

ATTN: D. Alley
Div X911
9333 Savage Road
Ft Meade MD 20755-6000

Director
NS A/CSS
411 DEFS44C
ATTN: Mr. Mark E. Ctesh
Fort Georgje G. Meade MD 20755-6000

DL-5

DoD

9130 Sav39e Road
Ft. Meaie MD 20755-6000

DIRNSA

1
R509
9300 Savage Road
Ft Meade 4D 20775

Director

NSA/CSS
R93
Fort George G. Meade MD 23755-6000

DL-6 J

